Given a function $f: I \to \mathbb{R}$ and $c \in I$, we say that f is **differentiable** at c if the limit

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{h \to 0} \frac{f(c + h) - f(c)}{h}.$$

exists. If it exists, we define the **derivative** of f at c, written f'(c), to be the above limit. We say f is **differentiable** if it is differentiable at all $c \in I$. In this case, we can define the **derivative function** (or simply **derivative**) $f': I \to \mathbb{R}$ by $x \mapsto f'(x)$.

Recall some properties of the derivative we have shown:

- The derivative is linear: if f and g are both differentiable at c, then so is f + g, and (f + g)'(c) = f'(c) + g'(c). If f is differentiable at c and $\alpha \in \mathbb{R}$, then so is αf , and $(\alpha f)'(c) = \alpha f'(c)$.
- Power rule: if $f: I \to \mathbb{R}$ is defined by $f(x) = x^n$ with $n \in \mathbb{N}$, then f is differentiable and

$$f'(x) = nx^{n-1}.$$

• Product rule: if f and g are both differentiable at c, then so is fg, with

$$(fg)'(c) = f'(c)g(c) + f(c)g'(c).$$

• Quotient rule: if f and g are both differentiable at c, and $g(c) \neq 0$, then so is f/g, with

$$\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{(g(c))^2}.$$

Problem 1

Find the derivative of the following functions.

1.
$$f : \mathbb{R} \to \mathbb{R}, f(x) = x^3 - 157x + 10^{48}.$$

2. $f : \mathbb{R} \to \mathbb{R}, f(x) = \frac{x^3 - 157x + 10^{48}}{2 + x^4}.$
3. $f : \mathbb{R} \setminus \{1\} \to \mathbb{R}, f(x) = \frac{x^3 - \frac{157}{x - 1} + 10^{48}}{2 + x^4}.$

Problem 2 Let $f : \mathbb{R} \to \mathbb{R}, f(x) = \sqrt{x}$. Show that

$$f'(x) = \frac{1}{2\sqrt{x}}$$

for all x using the limit definition of the derivative.

Problem 3 Let $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) = \frac{1}{x^n}$ with $n \in \mathbb{N}$. Show that

$$f'(x) = -\frac{n}{x^{n+1}}$$

for all $x \neq 0$ using the limit definition of the derivative. Hint: $a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \ldots + ab^{n-2} + b^{n-1}).$ **Problem 4 (Generalized Product Rule)** Suppose f_1, f_2, \ldots, f_n are functions that are all differentiable at c. Let f be the product of all f_i :

$$f = \prod_{i=1}^{n} f_i.$$

Show that

$$f'(c) = \sum_{i=1}^{n} \left(f'_i(c) \prod_{j=1, j \neq i}^{n} f_j(c) \right).$$

What does this say if n = 2? *Hint: Use induction and the product rule.*

Problem 5

Define $g:\mathbb{R}\to\mathbb{R}$ by

$$g(x) = \begin{cases} 0 & x \notin \mathbb{Q} \\ x^2 & x \in \mathbb{Q}. \end{cases}$$

On which points (if any) is g differentiable? Where is g non-differentiable?

Problem 6

Let c > 0. Find the area of the triangle bounded between the x-axis, the y-axis, and the line tangent to the curve $y = \frac{1}{x}$ at c.

